Search results for "Antisymmetric exchange"
showing 8 items of 8 documents
Structural and magnetic properties of polynuclear oximate copper complexes with different topologies
2017
Abstract Two new copper(II) complexes containing the methyl(2-pyridyl)ketone oxime ligand (mpkoH) [Cu3(OH)(ClO4)2(mpko)3]·CH3OH (1) and [Cu(ClO4)(mpko)(mpkoH)]n (2) have been prepared from Cu(ClO4)2 and mpkoH in different metal-to-ligand molar ratios. In addition, the compound [Cu{(mpko)2BF2}(H2O)](BF4) (3) [(mpko)2BF2 is the fluoroboration product of the oxime] has been obtained when replacing Cu(ClO4)2 by Cu(BF4)2. Compound 1 is an isolated triangle with a {Cu3(µ3-OH)}5+ core, whereas 2 is a chain of CuII ions linked by anionic mpko− bridges. 1 exhibits strong antiferromagnetic competing interactions, as well as antisymmetric exchange. On the other hand, very weak ferromagnetic interactio…
High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and I…
2001
A general solution of the exchange problem in the high-nuclearity spin clusters (HNSC) containing arbitrary number of exchange-coupled centers and topology is developed. All constituent magnetic centers are supposed to possess well-isolated orbitally non-degenerate ground states so that the isotropic Heisenberg-Dirac-Van Vleck (HDVV) term is the leading part of the exchange spin Hamiltonian. Along with the HDVV term, we consider higher-order isotropic exchange terms (biquadratic exchange), as well as the anisotropic terms (anisotropic and antisymmetric exchange interactions and local single-ion anisotropies). All these terms are expressed as irreducible tensor operators (ITO). This allows u…
Modelling the properties of magnetic clusters with complex structures: how symmetry can help us
2020
The purpose of this article is to answer the question of how symmetry helps us to investigate and understand the properties of nanoscopic magnetic clusters with complex structures. The systems of choice will be the three types of polyoxometalates (POMs): (1) POMs containing localised spins; (2) reduced mixed-valence (MV) POMs; (3) partially delocalised POMs in which localised and delocalised subunits coexist and interact. The theoretical tools based on various kinds of symmetry are the following: (1) irreducible tensor operator (ITO) approach based on the so-called 'spin-symmetry' and MAGPACK program; (2) group-theoretical assignment of the exchange multiplets based on spin- and point symme…
Heisenberg Exchange and Dzyaloshinskii–Moriya Interaction in Ultrathin Pt(W)/CoFeB Single and Multilayers
2021
We present results of the analysis of Brillouin light-scattering (BLS) measurements of spin waves performed on ultrathin single and multirepeat CoFeB layers with adjacent heavy metal layers. From a detailed study of the spin-wave dispersion relation, we independently extract the Heisenberg exchange interaction (also referred to as symmetric exchange interaction), the Dzyaloshinskii–Moriya interaction (DMI, also referred to as antisymmetric exchange interaction), and the anisotropy field. We find a large DMI in CoFeB thin films adjacent to a Pt layer and nearly vanishing DMI for CoFeB films adjacent to a W layer. Furthermore, the influence of the dipolar interaction on the dispersion relatio…
Magnon transport in the presence of antisymmetric exchange in a weak antiferromagnet
2021
The Dzyaloshinskii-Moriya interaction (DMI) is at the heart of many modern developments in the research field of spintronics. DMI is known to generate noncollinear magnetic textures, and can take two forms in antiferromagnets: homogeneous or inter-sublattice, leading to small, canted moments and inhomogeneous or intra-sublattice, leading to formation of chiral structures. In this work, we first determine the strength of the effective field created by the DMI, using SQUID based magnetometry and transport measurements, in thin films of the antiferromagnetic iron oxide hematite, $\alpha$-Fe$_2$O$_3$. We demonstrate that DMI additionally introduces reconfigurability in the long distance magnon …
Spin Frustration in Triangular Cu 3 II Complexes with 6‐Methyl‐2‐pyridyloxime as Ligand – Synthesis, Structural, and Magnetic Characterization
2013
In the present work, new examples of μ3-OH/oximato Cu3 triangles have been obtained by treatment of different copper salts with 6-methyl-2-pyridylaldoxime [6-MepyC(H)NOH, 6-mepaoH]. Depending on the anion, the compounds [Cu3(OH)(6-mepao)3(O2CPh)2] (1), [Cu6(OH)2(6-mepao)6(NO3)3](NO3)·H2O (2·H2O) and [Cu6(OH)2(6-mepao)6(ClO4)3](ClO4) (3) formed and were characterized. Complex 1 is an isolated triangle, whereas 2 and 3 are hexanuclear compounds with two triangular subunits linked by anionic bridges. Susceptibility measurements show very strong antiferromagnetic interactions and the presence of antisymmetric exchange at low temperature. The magnetic properties of these frustrated triangles hav…
Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters.
2011
Two new trinuclear copper(II) complexes, [Cu(3)(μ(3)-OH)(daat)(Hdat)(2)(ClO(4))(2)(H(2)O)(3)](ClO(4))(2)·2H(2)O (1) and [Cu(3)(μ(3)-OH)(aaat)(3)(H(2)O)(3)](ClO(4))(2)·3H(2)O (2) (daat = 3,5-diacetylamino-1,2,4-triazolate, Hdat = 3,5-diamino-1,2,4-triazole, and aaat = 3-acetylamino-5-amino-1,2,4-triazolate), have been prepared from 1,2,4-triazole derivatives and structurally characterized by X-ray crystallography. The structures of 1 and 2 consist of cationic trinuclear copper(II) complexes with a Cu(3)OH core held by three N,N-triazole bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with distorted square-pyramidal geometries. The magnetic properties of 1 …
Crystal structures and magnetic properties of two- and three-dimensional malonato-bridged manganese(ii) complexes
2003
Two new manganese(II) compounds of formula [Mn(mal)(H2O)(2,4′-bpy)]n (1) and [Mn2(mal)2(H2O)2(4,4′-bpy)]n (2) (2,4′-bpy = 2,4′-bipyridine, 4,4′-bpy = 4,4′-bipyridine and H2mal = malonic acid) have been prepared and structurally characterized by X-ray crystallography. Their structures are made up of two- (1) and three-dimensional (2) arrangements of manganese atoms linked by carboxylate-malonate groups in the anti–syn bridging mode (1 and 2) and bis(monodentate) 4,4′-bpy (2). The 2,4′-bpy group in 1 acts as a monodentate ligand. Each manganese atom in 1 and 2 is six-coordinated with four carboxylate-oxygens in the equatorial plane and a nitrogen atom and a water molecule in the axial positio…